40 research outputs found

    For geological investigations with airborne thermal infrared multispectral images: Transfer of calibration from laboratory spectrometer to TIMS as alternative for removing atmospheric effects

    Get PDF
    This paper describes an empirical method to correct TIMS (Thermal Infrared Multispectral Scanner) data for atmospheric effects by transferring calibration from a laboratory thermal emission spectrometer to the TIMS multispectral image. The method does so by comparing the laboratory spectra of samples gathered in the field with TIMS 6-point spectra for pixels at the location of field sampling sites. The transference of calibration also makes it possible to use spectra from the laboratory as endmembers in unmixing studies of TIMS data

    Physical properties (particle size, rock abundance) from thermal infrared remote observations: Implications for Mars landing sites

    Get PDF
    Critical to the assessment of potential sites for the 1997 Pathfinder landing is estimation of general physical properties of the martian surface. Surface properties have been studied using a variety of spacecraft and earth-based remote sensing observations, plus in situ studies at the Viking lander sites. Because of their value in identifying landing hazards and defining scientific objectives, we focus this discussion on thermal inertia and rock abundance derived from middle-infrared (6 to 30 microns) observations. Used in conjunction with other datasets, particularly albedo and Viking orbiter images, thermal inertia and rock abundance provide clues about the properties of potential Mars landing sites

    Aerolian erosion, transport, and deposition of volcaniclastic sands among the shifting sand dunes, Christmas Lake Valley, Oregon: TIMS image analysis

    Get PDF
    Remote sensing is a tool that, in the context of aeolian studies, offers a synoptic view of a dune field, sand sea, or entire desert region. Blount et al. (1990) presented one of the first studies demonstrating the power of multispectral images for interpreting the dynamic history of an aeolian sand sea. Blount's work on the Gran Desierto of Mexico used a Landsat TM scene and a linear spectral mixing model to show where different sand populations occur and along what paths these sands may have traveled before becoming incorporated into dunes. Interpretation of sand transport paths and sources in the Gran Desierto led to an improved understanding of the origin and Holocene history of the dunes. With the anticipated advent of the EOS-A platform and ASTER thermal infrared capability in 1998, it will become possible to look at continental sand seas and map sand transport paths using 8-12 mu m bands that are well-suited to tracking silicate sediments. A logical extension of Blount's work is to attempt a similar study using thermal infrared images. One such study has already begun by looking at feldspar, quartz, magnetite, and clay distributions in the Kelso Dunes of southern California. This paper describes the geology and application of TIMS image analysis of a less-well known Holocene dune field in south central Oregon using TIMS data obtained in 1991

    Extraformational sediment recycling on Mars

    Get PDF
    Extraformational sediment recycling (old sedimentary rock to new sedimentary rock) is a fundamental aspect of Earth's geological record; tectonism exposes sedimentary rock, whereupon it is weathered and eroded to form new sediment that later becomes lithified. On Mars, tectonism has been minor, but two decades of orbiter instrument-based studies show that some sedimentary rocks previously buried to depths of kilometers have been exposed, by erosion, at the surface. Four locations in Gale crater, explored using the National Aeronautics and Space Administration's Curiosity rover, exhibit sedimentary lithoclasts in sedimentary rock: At Marias Pass, they are mudstone fragments in sandstone derived from strata below an erosional unconformity; at Bimbe, they are pebble-sized sandstone and, possibly, laminated, intraclast-bearing, chemical (calcium sulfate) sediment fragments in conglomerates; at Cooperstown, they are pebble-sized fragments of sandstone within coarse sandstone; at Dingo Gap, they are cobble-sized, stratified sandstone fragments in conglomerate derived from an immediately underlying sandstone. Mars orbiter images show lithified sediment fans at the termini of canyons that incise sedimentary rock in Gale crater; these, too, consist of recycled, extraformational sediment. The recycled sediments in Gale crater are compositionally immature, indicating the dominance of physical weathering processes during the second known cycle. The observations at Marias Pass indicate that sediment eroded and removed from craters such as Gale crater during the Martian Hesperian Period could have been recycled to form new rock elsewhere. Our results permit prediction that lithified deltaic sediments at the Perseverance (landing in 2021) and Rosalind Franklin (landing in 2023) rover field sites could contain extraformational recycled sediment.With funding from the Spanish government through the "Mar铆a de Maeztu Unit of Excellence" accreditation (MDM-2017-0737

    AVIATR - Aerial Vehicle for In-situ and Airborne Titan Reconnaissance A Titan Airplane Mission Concept

    Get PDF
    We describe a mission concept for a stand-alone Titan airplane mission: Aerial Vehicle for In-situ and Airborne Titan Reconnaissance (AVIATR). With independent delivery and direct-to-Earth communications, AVIATR could contribute to Titan science either alone or as part of a sustained Titan Exploration Program. As a focused mission, AVIATR as we have envisioned it would concentrate on the science that an airplane can do best: exploration of Titan's global diversity. We focus on surface geology/hydrology and lower-atmospheric structure and dynamics. With a carefully chosen set of seven instruments-2 near-IR cameras, 1 near-IR spectrometer, a RADAR altimeter, an atmospheric structure suite, a haze sensor, and a raindrop detector-AVIATR could accomplish a significant subset of the scientific objectives of the aerial element of flagship studies. The AVIATR spacecraft stack is composed of a Space Vehicle (SV) for cruise, an Entry Vehicle (EV) for entry and descent, and the Air Vehicle (AV) to fly in Titan's atmosphere. Using an Earth-Jupiter gravity assist trajectory delivers the spacecraft to Titan in 7.5 years, after which the AVIATR AV would operate for a 1-Earth-year nominal mission. We propose a novel 'gravity battery' climb-then-glide strategy to store energy for optimal use during telecommunications sessions. We would optimize our science by using the flexibility of the airplane platform, generating context data and stereo pairs by flying and banking the AV instead of using gimbaled cameras. AVIATR would climb up to 14 km altitude and descend down to 3.5 km altitude once per Earth day, allowing for repeated atmospheric structure and wind measurements all over the globe. An initial Team-X run at JPL priced the AVIATR mission at FY10 $715M based on the rules stipulated in the recent Discovery announcement of opportunity. Hence we find that a standalone Titan airplane mission can achieve important science building on Cassini's discoveries and can likely do so within a New Frontiers budget

    Ancient Martian aeolian processes and palaeomorphology reconstructed from the Stimson formation on the lower slope of Aeolis Mons, Gale crater, Mars

    Get PDF
    Reconstruction of the palaeoenvironmental context of Martian sedimentary rocks is central to studies of ancient Martian habitability and regional palaeoclimate history. This paper reports the analysis of a distinct aeolian deposit preserved in Gale crater, Mars, and evaluates its palaeomorphology, the processes responsible for its deposition, and its implications for Gale crater geological history and regional palaeoclimate. Whilst exploring the sedimentary succession cropping out on the northern flank of Aeolis Mons, Gale crater, the Mars Science Laboratory rover Curiosity encountered a decametre鈥恡hick sandstone succession, named the Stimson formation, unconformably overlying lacustrine deposits of the Murray formation. The sandstone contains sand grains characterized by high roundness and sphericity, and cross鈥恇edding on the order of 1 m in thickness, separated by sub鈥恏orizontal bounding surfaces traceable for tens of metres across outcrops. The cross鈥恇eds are composed of uniform thickness cross鈥恖aminations interpreted as wind鈥恟ipple strata. Cross鈥恠ets are separated by sub鈥恏orizontal bounding surfaces traceable for tens of metres across outcrops that are interpreted as dune migration surfaces. Grain characteristics and presence of wind鈥恟ipple strata indicate deposition of the Stimson formation by aeolian processes. The absence of features characteristic of damp or wet aeolian sediment accumulation indicate deposition in a dry aeolian system. Reconstruction of the palaeogeomorphology suggests that the Stimson dune field was composed largely of simple sinuous crescentic dunes with a height of ca 10 m, and wavelengths of ca 150 m, with local development of complex dunes. Analysis of cross鈥恠trata dip azimuths indicates that the general dune migration direction and hence net sediment transport was towards the north鈥恊ast. The juxtaposition of a dry aeolian system unconformably above the lacustrine Murray formation represents starkly contrasting palaeoenvironmental and palaeoclimatic conditions. Stratigraphic relationships indicate that this transition records a significant break in time, with the Stimson formation being deposited after the Murray formation and stratigraphically higher Mount Sharp group rocks had been buried, lithified and subsequently eroded

    Ancient Martian aeolian processes and palaeomorphology reconstructed from the Stimson formation on the lower slope of Aeolis Mons, Gale crater, Mars

    Get PDF
    Reconstruction of the palaeoenvironmental context of Martian sedimentary rocks is central to studies of ancient Martian habitability and regional palaeoclimate history. This paper reports the analysis of a distinct aeolian deposit preserved in Gale crater, Mars, and evaluates its palaeomorphology, the processes responsible for its deposition, and its implications for Gale crater geological history and regional palaeoclimate. Whilst exploring the sedimentary succession cropping out on the northern flank of Aeolis Mons, Gale crater, the Mars Science Laboratory rover Curiosity encountered a decametre鈥恡hick sandstone succession, named the Stimson formation, unconformably overlying lacustrine deposits of the Murray formation. The sandstone contains sand grains characterized by high roundness and sphericity, and cross鈥恇edding on the order of 1 m in thickness, separated by sub鈥恏orizontal bounding surfaces traceable for tens of metres across outcrops. The cross鈥恇eds are composed of uniform thickness cross鈥恖aminations interpreted as wind鈥恟ipple strata. Cross鈥恠ets are separated by sub鈥恏orizontal bounding surfaces traceable for tens of metres across outcrops that are interpreted as dune migration surfaces. Grain characteristics and presence of wind鈥恟ipple strata indicate deposition of the Stimson formation by aeolian processes. The absence of features characteristic of damp or wet aeolian sediment accumulation indicate deposition in a dry aeolian system. Reconstruction of the palaeogeomorphology suggests that the Stimson dune field was composed largely of simple sinuous crescentic dunes with a height of ca 10 m, and wavelengths of ca 150 m, with local development of complex dunes. Analysis of cross鈥恠trata dip azimuths indicates that the general dune migration direction and hence net sediment transport was towards the north鈥恊ast. The juxtaposition of a dry aeolian system unconformably above the lacustrine Murray formation represents starkly contrasting palaeoenvironmental and palaeoclimatic conditions. Stratigraphic relationships indicate that this transition records a significant break in time, with the Stimson formation being deposited after the Murray formation and stratigraphically higher Mount Sharp group rocks had been buried, lithified and subsequently eroded
    corecore